

Red Hat OpenShift Virtualization

An Overview

Brian Dumont Lt Principal Solution Architect

What we'll discuss today

- Hybrid Cloud Evolution
- What is OpenShift Virtualization
- OpenShift Virtualization Architectural
 Overview
- Product and Customer Journeys

Hybrid Cloud

Reality of enterprise IT environments

Mixed infrastructure environments, diverse app portfolios, & limited automation

How do you deliver business innovation faster in a complex world?

Challenges of traditional VMs

</>

Kubernetes solves these challenges

Bring Cloud-native functionality to virtual machines with Red Hat innovation

The benefits of k8s without containerizing

OpenShift Virtualization

What is OpenShift Virtualization?

8

Leverage the Entire CNCF Project Ecosystem

Contributing Companies CNCF Incubating project

133

Observability & Alerting (Prometheus) L2 Networking (Multus, Kube-OVN) Service Meshes (Istio) Automation (Tekton, ArgoCD) Workload migration (Konveyor)

*https://www.cncf.io/blog/2022/04/19/kubevirt-becomes-a-cncf-incubating-project/ ** https://www.cncf.io/reports/cncf-annual-report-2022/

OpenShift Virtualization is included with OpenShift

Modernized workloads, support mixed applications consisting of VMs, containers, and serverless

- Add VMs to new and existing applications
- Accelerates application delivery with a single platform that manages applications with same tools and teams
- Modernize legacy VM based applications over time, or maintain them as VMs
- OpenShift Virtualization is a feature of OpenShift and included in OCP/OPP/OKE SKU.

Remove Complexity by adopting a single platform

Applications, data platforms, and operating system

Red Hat OpenShift

Container platform market share leader

Realizing business value from adopting Red Hat OpenShift

return on investment over 5 years

<u>闷</u> 20%

higher application developer productivity

\$ US\$21.6 million

higher revenue per year per organization

54% lower 5-year cost of operations

3x more new features per year **71%** less unplanned downtime

21% more efficient IT infrastructure teams

OpenShift Application-centric Technologies with Virtual Machines

- Virtual machines utilize OpenShift and Kubernetes functionality natively:
 - Service, Route
 - GitOps
 - Pipelines / Tekton
 - and others
- Containerized and virtualized app components don't know whether the other is virtual or containerized
- OpenShift Virtualization brings the benefits of Kubernetes without containerizing the application

OpenShift Virtualization: Bring traditional VMs to a modern Kubernetes platform

Create Migration Plan									
1	General Select VMs VM selection Select VMs Filter VMs Select VMs Select VMs service. The Flags indicate the reason for that risk assessment. Select VMs service. The Flags indicate the reason for that risk assessment. 3 Storage mapping Name v Filter to name.							nined by Red Hat's Migration Analytics	
4	Network mapping Hooks	•		Migration analysis	VM name	Datacenter	Cluster	Host	Folder path
6	Review	•		A	VM1	datacenter1	cluster1	host1	folder1\folder2
		÷.		0	VM2	datacenter1	cluster1	host1	folder1\folder2
		•		0	VM3	datacenter1	cluster1	host1	folder1\folder2
		•		0	VM4	datacenter1	cluster1	host1	folder1\folder2
		-		0	VM5	datacenter1	cluster1	host1	folder1\folder2
_			This V - VN - VN - VN	M is a high risk fo shares a disk with uses remote devic was harvested du	migration because it other VMs æmanagement ring a month without	violates the following rules:			

Create a migration plan with Red Hat Migration Toolkit for Virtualization (MTV)

Keep traditional VM behavior in a modern Kubernetes platform

- Administrator concepts and actions
- Network connectivity
- Live migration

Keep existing roles and responsibilities intact

• Modernize skill sets over time, maintain business critical application components

Mass migration of VMs

• Simplified migration of VMs at scale with Migration Toolkit for Virtualization (MTV)

Enterprises Modernizing Applications Iteratively

OpenShift Virtualization:Build Cloud-native VMs

Deploy VMs as Code with CI/CD

17

Integrate legacy VMs with a modern GitOps framework

- Deploy different security zones to run both composite applications of pods/VMs as well as traditional VM workloads
- Deploy and automate Virtual Machines as Code with GitOps

OpenShift Virtualization Architectural Overview

VM containers use KVM

- OpenShift Virtualization uses KVM, the Linux kernel hypervisor
- KVM is a core component of the Red Hat Enterprise Linux kernel
 - KVM has 10+ years of production use: Red Hat
 Virtualization, Red Hat OpenStack Platform, and
 RHEL all leverage KVM, QEMU, and libvirt
- QEMU uses KVM to execute virtual machines
- **libvirt** provides a management abstraction layer

Virtual machines in a container world

- Provides a way to transition application components which can't be directly containerized into a Kubernetes system
 - Integrates directly into existing k8s clusters
 - Follows Kubernetes paradigms:
 - Container Networking Interface (CNI)
 - Container Storage Interface (CSI)
 - Custom Resource Definitions (CRD, CR)
- Schedule, connect, and consume VM resources as container-native

Virtualization native to Kubernetes

- Operators are a Kubernetes-native way to introduce new capabilities
- New CustomResourceDefinitions (CRDs) for native VM integration, for example:
 - VirtualMachine
 - VirtualMachineInstance
 - VirtualMachineInstanceMigration
 - VirtualMachineSnapshot
 - \circ DataVolume

```
apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 labels:
   app: demo
   flavor.template.kubevirt.io/small: "true"
 name: rhel
spec:
 dataVolumeTemplates:
  - apiVersion: cdi.kubevirt.io/v1alpha1
   kind: DataVolume
   metadata:
     creationTimestamp: null
     name: rhel-rootdisk
   spec:
      pvc:
        accessModes:
        - ReadWriteMany
        resources:
          requests:
            storage: 20Gi
       storageClassName: managed-nfs-storage
       volumeMode: Filesystem
```


Containerized virtual machines

Kubernetes resources

• Every VM runs in a launcher pod. The launcher process will supervise, using libvirt, and provide pod integration.

Red Hat Enterprise Linux

 libvirt and qemu from RHEL are mature, have high performance, provide stable abstractions, and have a minimal overhead.

Security - Defense in depth

Immutable RHCOS by default, SELinux MCS, plus KVM isolation – inherited from the Red Hat Portfolio stack

Containerized virtual machines

- Inherit many features and functions from Kubernetes
 - Scheduling, high availability, attach/detach resources
- Containerized virtual machines have the same characteristics as non-containerized
 - CPU, RAM, etc. limitations dictated by libvirt and QEMU
 - Linux and Windows guest operating systems
- Storage
 - Use Persistent Volumes Claims (PVCs) for VM disks
 - Containerized Data Importer (CDI) import VM images
- Network
 - Inherit pod network by default
 - Multus enables direct connection to external network

Using VMs and containers together

- Virtual machines connected to pod networks are accessible using standard Kubernetes methods:
 - Service
 - Route
 - Ingress
- Network policies apply to VM pods the same as application pods
- VM-to-pod, and vice-versa, communication happens over SDN or ingress depending on network connectivity

53

Product and Customer Journey

Use Case and Product Journey

sahibinden.com

"Red Hat OpenShift is the clear leader in enterprise Kubernetes. And while the virtualization market leaders can run Kubernetes on their virtualized infrastructure, only Red Hat OpenShift can run our whole virtualization environment within its Kubernetes container platform."

Hayri Yalçınkaya Director of Infrastructure Management, sahibinden.com

sahibinden.com delivers reliable retail services faster with Red Hat OpenShift

Challenge

Sahibinden.com sought to modernize its IT infrastructure and work approaches to maintain its market-leading position against competition from start-ups and global retailers.

Solution

The company began a three-phase project to migrate its existing virtual machines (VMs) into container workflows with Red Hat[®] OpenShift[®], running in a private cloud environment across its two datacenters.

Results

- **Decreased system reliability incidents by 97%** with active-active datacenter configuration and improved scalability
- Improved DevOps experience with combined VM and container management
- Enhanced talent attraction and retention
- Optimized container adoption with expert support and guidance

Applications running on OpenShift

Customer Journey

			Results
		Scale Migration	
	Create Pilot	Scale Migration	
Assess workloads and	Migration	Migrate VM's at scale	Decreased system
devise migration strategy			reliability incidents by 97%
2,400 VM's	Migrate initial batch of VM's	Train staff and build skills	Combined VM and container management
Two datacenters, active-passive	Two datacenters, Establish microservices active-passive development environment		Two datacenters, active-active

Edge

Challenge

Remote management Space and Power constraints Specialized workloads may require VMs e.g. running VNFs, Sensors based on Windows, retail stores, remote sites

Solution

Utilize OpenShift to host both virtual machines (VMs) and containers utilizing compact cluster or Single Node OpenShift (SNO)

Results

100s of sites consolidated to run on minimum amount of hardware Accelerate solution by several years using non-containerized workloads

(%) Global Telecommunications /

5G Provider

Rolled out a greenfield large scale application at the core where some components had to be in VMs. Architect, develop, test, and scale *production-like* deployments many months before a containerized version of applications being available.

- MySQL Cluster Carrier Grade Edition from Oracle
- F5 BIG-IP, initially deployed as VM, refactoring to a container

"Significantly accelerate time to market, while ensuring reliability and quality of the overall solution."

OpenShift Virtualization two years of demonstrated ability

Enterprise Virtualization Capabilities

- Live Migration
- Infrastructure fencing
- Application fencing
- DRS
- OADP for backup
- Crash consistent snapshots
- Hot pluggable disks
- Storage profiles
- CPU overcommit
- VM disk resize
- DPDK, SRI-IOV, IPv6
- GPU passthrough, vGPU
- → UI for VM admins
 - VM export

Enterprise Scale

Public Cloud

Telco/ Edge Integrations

- Performance and limits parity
- Scale whitepaper 3K VMs/21K containers in a single cluster

- AWS tech preview
- IBM Cloud Bare Metal Tech Preview
- Equinix validation

- SNO support
- VNF validation
- Latency self-check
- Compact Cluster Infrastructure fencing* (4.12)

High Level Roadmap Themes*

Enterprise Virtualization Capabilities

- Metro (Sync) DR with ODF
- Regional (Async) DR with ODF
- Ecosystem DR integrations
- Overlay Secondary network
- Network Hotplug
- CPU Hotplug
- Memory Overcommit

(🎗)

Enterprise Scale

Scale to 10K VMs in a

single cluster

VNUMA

•

Multi-Cluster Scaling

OpenShift Developer Services

- OCP Virt as Hosted
 Control Plane
 (HyperShift) Provider
- Workload aware scheduler ACM VM lifecycle and workflow
- Tekton and ArgoCD integration for VMs
- Windows 11 and Windows
 Server 2022 examples.
- Ansible integration
- Gateway API for load balancing

Thank you

Red Hat is the world's leading provider of enterprise open source software solutions. Award-winning support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500.

Comparing with traditional virtualization platforms

Terminology comparison

Feature	RHV	OpenShift Virtualization	vSphere
Where VM disks are stored	Storage Domain	PVC	datastore
Policy based storage	None	StorageClass	SPBM
Non-disruptive VM migration	Live migration	Live migration	vMotion
Non-disruptive VM storage migration	Storage live migration	N/A	Storage vMotion
Active resource balancing	Cluster scheduling policy	Pod eviction policy, descheduler	Dynamic Resource Scheduling (DRS)
Physical network configuration	Host network config (via nmstate w/4.4)	nmstate Operator, Multus	vSwitch / DvSwitch
Overlay network configuration	OVN	OCP SDN (OpenShiftSDN, OVNKubernetes, and partners), Multus	NSX-T
Host / VM metrics	Data warehouse + Grafana (RHV 4.4)	OpenShift Metrics, health checks	vCenter, vROps

Live Migration

- Live migration moves a virtual machine from one node to another in the OpenShift cluster
- Can be triggered via GUI, CLI, API, or automatically
- RWX storage is required
- Live migration is cancellable by deleting the API object
- Default maximum of five (5) simultaneous live migrations
 - Maximum of two (2) outbound migrations per node, 64MiB/s throughput each

Migration Reason	vSphere	OpenShift Virtualization
Resource contention	DRS	Pod eviction policy, pod descheduler
Node maintenance	Maintenance mode	Maintenance mode, node drain

Automated live migration

- OpenShift / Kubernetes triggers Pod rebalance actions based on multiple factors
 - Soft / hard eviction policies
 - Pod descheduler
 - Pod disruption policy
 - Node resource contention resulting in evictions
 - Pods are Burstable QoS class by default
 - All memory is requested in Pod definition, only CPU overhead is requested
- Pod rebalance applies to VM pods equally
- VMs will behave according to the eviction strategy
 - LiveMigrate use live migration to move the VM to a different node
 - No definition terminate the VM if the node is drained or Pod evicted

VM scheduling

- VM scheduling follows pod scheduling rules
 - Node selectors
 - Taints / tolerations
 - Pod and node affinity / anti-affinity
- Kubernetes scheduler takes into account many additional factors
 - Resource load balancing requests and reservations
 - Large / Huge page support for VM memory
 - Use scheduler profiles to provide additional hints (for all Pods)
- Resources are managed by Kubernetes
 - CPU and RAM requests less than limit Burstable QoS by default
 - K8s QoS policy determines scheduling priority: BestEffort class is evicted before
 Burstable class, which is evicted before Guaranteed class

Node Resource Management

- VM density is determined by multiple factors controlled at the cluster, OpenShift Virtualization, Pod, and VM levels
- Pod QoS policy
 - Burstable (limit > request) allows more overcommit, but may lead to more frequent migrations
 - Guaranteed (limit = request) allows less overcommitment, but may have less physical resource utilization on the hosts
- Cluster Resource Override Operator provides global overcommit policy, can be customized per project for additional control
- Pods request full amount of VM memory and approx. 10% of VM CPU
 - VM pods request a small amount of additional memory, used for libvirt/QEMU overhead
 - Administrator can set this to be overcommitted

High availability

- Node failure is detected by Kubernetes and results in the Pods from the lost node being rescheduled to the surviving nodes
- VMs are not scheduled to nodes which have not had a heartbeat from virt-handler, regardless of Kubernetes node state
- Additional monitoring may trigger automated action to force stop the VM pods, resulting in rescheduling
 - May take up to 5 minutes for virt-handler and/or Kubernetes to detect failure
 - Liveness and Readiness probes may be configured for VM-hosted applications
 - Machine health checks can decrease failure detection time

